Shock sets for first order nonlinear hyperbolic equations
نویسندگان
چکیده
منابع مشابه
Difference Methods for Nonlinear First-Order Hyperbolic Systems of Equations
Two difference methods for approximating some first-order nonlinear hyperbolic differential equations are considered. The methods apply to problems arising in a number of physical applications. Each of the methods is explicit and can be implemented on a computer easily. It is proved that the methods are first-order convergent in the maximum norm. For one of the methods in order to obtain conver...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملShock Waves and Compactons for Fifth-order Nonlinear Dispersion Equations
The following question is posed: to justify that the standing shock wave S−(x) = −signx = − { −1 for x < 0, 1 for x > 0, is a correct “entropy” solution of fifth-order nonlinear dispersion equations (NDEs), ut = −(uux)xxxx and ut = −(uuxxxx)x in R × R+. These two quasilinear degenerate PDEs are chosen as typical representatives, so other similar (2m+ 1)th-order NDEs with no divergence structure...
متن کاملStabilization and controllability of first-order integro-differential hyperbolic equations
In the present article we study the stabilization of first-order linear integro-differential hyperbolic equations. For such equations we prove that the stabilization in finite time is equivalent to the exact controllability property. The proof relies on a Fredholm transformation that maps the original system into a finite-time stable target system. The controllability assumption is used to prov...
متن کاملFirst-order symmetric hyperbolic Einstein equations with arbitrary fixed gauge.
We find a one-parameter family of variables which recast the 3+1 Einstein equations into firstorder symmetric-hyperbolic form for any fixed choice of gauge. Hyperbolicity considerations lead us to a redefinition of the lapse in terms of an arbitrary factor times a power of the determinant of the 3-metric; under certain assumptions, the exponent can be chosen arbitrarily, but positive, with no i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1972
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1972.42.17